Keras with TensorBoard - Jupyter Notebook¶
The ClearML_keras_TB_example.ipynb example demonstrates ClearML in automatic logging of code running in Jupyter Notebook that uses Keras and TensorBoard. It trains a simple deep neural network on the Keras built-in MNIST dataset. It builds a sequential model using a categorical crossentropy loss objective function, specifies accuracy as the metric, and uses two callbacks: a TensorBoard callback and a model checkpoint callback. When the script runs, it creates an experiment named Keras with TensorBoard example
which is associated with the Colab notebooks
project.
Note
In the clearml
GitHub repository, this example includes a clickable icon to open the notebook in Google Colab.
Scalars¶
The loss and accuracy metric scalar plots appear in the RESULTS > SCALARS, along with the resource utilization plots, which are titled :monitor: machine.
Hyperparameters¶
ClearML automatically logs TensorFlow Definitions which appear in CONFIGURATIONS > HYPER PARAMETERS > TF_DEFINE.
Log¶
Text printed to the console for training progress, as well as all other console output, appear in RESULTS > LOG.
Configuration objects¶
The configuration appears in CONFIGURATIONS > CONFIGURATION OBJECTS > General.